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ABSTRACT: In this study the mathematical model of unidirectionally moving prototype of a mobile 

mechanical system with vibration propulsion (VibroBot) is proposed and investigated. The results of a 

numerical experiment with the data of a real prototype having non-linear elastic and dissipative 

characteristics are presented. The effects of the variation of parameters of the model on the dynamics of the 

VibroBot are studied and analyzed. The requirements for mechanical improvements of the propulsion 

system are defined based on the results of physical experiments previously accomplished. It was found that 

the mean robot velocity is very sensitive upon most of the parameters of the mechanical system. Also the 

proposed mathematical model visualizes how the energy of the rearward stroke of propulsion mechanism 

can be transformed into an increased mean velocity of the forward motion. 
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I. INTRODUCTION 
Mobile robots with vibration propulsion known as Vibrobots are subject of increased interest. It is inspired by 

some of their properties when moving underdifferent conditions,under the requirements for energy efficiency, 

small size and tobe ecologically friendly. The Vibrobots have a simple design, do not require 

complextransmission mechanisms and achieve high degree of adaptability. Their distinctive features are that 

they operate in the vicinity of the main resonance and have dynamic non-linearity, which obstructs their study. 

 The Vibrobots are propelled as a result of the action of inertia forces generated by the relative motion 

of internally rotating unbalanced masses in the propulsion system and the external friction forces. Most studies 

conducted with differentVibrobots are related to analytical modeling, experimental prototype testing and 

computer simulation of their dynamic behavior [1], [2], [3], [4], [5]. 

 It is known that vibration-operating machines are more effective than non-vibration machines when 

tuned to resonance regimes [6]. In these cases the non-stationery internal ties in the mechanical system are the 

causes for high sensitivity, parametric oscillations and generation of oscillations with large amplitudes in some 

elements. In this case, conditions for violation the dynamic strength are created as in number of cases periodic 

jumping motions with separation from the supporting surfaces are detected. 

 In this study a mathematical model of a VibroBot with one-way motion is created, based on 

experimental data obtained in [7] for a prototype model studied in [8], [9]. With the aid of numerical experiment 

a dynamic analyses of this model isconducted and the conditions for the dynamic improvement are found. 

II. MATHEMATICAL MODEL 
In Fig. 1 the physical model of a VibroBot is shown. The rotating motion of the unbalanced counter-rotating 

masses is converted into a one-way pulsating motion of thepropulsion mechanism and the chassis. The 

unidirectional motion is achievedby means of one-way roller bearings built-into the wheel’s hubs that allow 

rotation motion in one direction and block the rotation of the wheels in the opposite direction. 

 For the creation of a mathematical model of the prototype model shown in Fig. 1 we consider a 5-mass 

2D-model of the three-dimensional 8-mass mechanical system illustrated in Fig. 2. We assume that all masses of 

this model are distributed in plane shapes that move in a vertical plane, matching the reference XOZ plane of the 

introduced absolute coordinate system OXYZ (Fig. 2). In the direction of the axis OY the spatial mechanical 

system has a dynamic symmetry. This assumption is true about the excitation effect of the two counter-rotating 

unbalanced masses m3/2and for the symmetrically positioned elastic and disipativni ties, but is approximate for 

the location of mass centers of the individual bodies. 

The bodies 1 and 2 of weights G1 and G2 performrectilinear-translation motions. The excitation action 

of the two counter-rotating unbalanced masses m3/2 is directed along the OX axis. This effect can be simulated 

by means of the periodic motion of the equivalent body 3 relative to body 2, considered to be a point mass of 

weight G3 = m3g, that moves in accordance of a harmonic periodic law  (t). 
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We introduce thegeneralizedcoordinates x1, x2, x3, that define the position of the bodies 1, 2 and 3 

within the XOZcoordinate plane (Fig. 2).  

The coordinates x1, x2andx3 are inter-connected through the equations: 

(1) x2(t) = x1(t) + l0 +  (t),  

x3(t) = x2(t) + l2 +  (t),  

where: is the measure of the relative variation of the length of the equivalent spring to its initial static 

state;  (t) =  sin ( t + 0)– is the law of periodic motion of body 3; the distance l0is the initial length of the 

equivalent spring; distances l2,, the initial phase angle 0 of the rotating unbalanced masses and the angular 

velocity   are assumed constant quantities. The wheels of the robot, modeled as solid (equal in pairs) bodies 4 

and 5 are performing general plane motions. Their mass centers have velocities equal to the velocity 

V1  dx1/dtof body 1, because their axes are fixed to it and are pushed directly bythat body (Fig. 1). 

We present the following designations for the absolute accelerations of the bodies of the mechanical 

system in consideration as: 

 a1  d
2
x1/dt

2
  dV1/dt,  

(2) a2  d
2
x2/dt

2
  dV2/dt, 

a3  d
2
x3/dt

2
 =  a2 + d

2 
/dt

2
  a2 –  2sin  a2 –  2,  

=a1/r,  

where:  is the angular acceleration of the wheels under the assumption that they are rolling with no slip.  

To derive the differential equations of motion by the method of kineto-statics [10],we split the 

mechanical system into the individual bodies and present the following forces: 

 active forces Gi,i = 1, 2, …, 5,  

 reactions Nj, Tj,j = 1, 2,  

 the forces of interaction between the bodies Rv,  v = 1, 2, 3, Fk and Fb, 

 inertia forcesФl,  l = 1, 2, …, 5, 

 the moments of inertia forces M
Ф

,    = 4, 5, 

where: Gi = mi gare the weights of the bodies; Fk = – (k + c 2
),  = x2 – (x1 + l0) is the measure of the equivalent 

elastic force Fkwith initial value Fk(0) = [k + c(s0 – l0)
2
](s0 – l0) withs0  x2(0) and   is the dynamic deformation 

of the spring; Fb = – b|V2 – V1| – is the measure of the resultant dissipative force Fb, where  sign(V2 – V1) – 

is the signum-function; Ff = – f (m2 + m3)g – is the measure of the friction force; Фl = – ml al –the 

 D’Alambert’s inertia forces and M
Ф

 = – (m r/ 2)a1 –the D’Alambert’s moments of the inertia forces. 

Fig. 1 shows the prototype of vibrobot, where: 1 – 

is the shaker, 2 –chassis, 3 –wheels & one-way 

bearings, 4- springs, 5- wheels & one-way 

bearings, 6- motor, 7- gears, 8- linear bearings. 

, 4 –spring, 5 –rotating unbalanced masses, 6 – 

linear bearings, 7 –  

Fig. 2 presents the dynamic model of the 

VibroBot  
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Table 1 presents the free-body diagrams (FBD) of individual bodies of the VibroBot, where body 1is 

the chassis, body 2 is the shaker, body 3 presents the rotating unbalanced masses and bodies 4 and 5 are wheels. 

Upon these bodies the active forces, reactions, forces of interaction between individual bodies and the 

components of inertia forces acting on each body are presented.  

In accordance with the principle of D’Alambert’s these systems of forces are in equilibrium. The 

unknowns are the measures of the reactions R1, R2, R3, P1, P2, P3, P4, N1, T1, N2, T2, the magnitudes of 

accelerations a1, a2, a3 relevant to theiroriginally selected directions as well as the unknown distance l3.  

From the conditions of equilibrium (not shown) and (2) the above unknowns are found to be: 

a1 = Fa /[m1 + (3/2)(m4 + m5)] 

a2 =  [m3
 2 – Fa] /(m2 + m3) 

a3 = a2 –  2 

R1 =– m3a3 

R2 = m3g 

R3 = (m2 + m3)g 

P1 = (3/2)m4a1 

(3) P2 = {– Fah4 +[(m2 + m3) (d1 – d3) + m1(d1 – d2)]g – m1a1h5}/d1 

T1 = (1/2)m4a1 

T2 = (1/2)m5a1 

P3 = (3/2)m5a1 

P4 = {Fah4 + [(m2 + m3)d3 + m1d2]g+ m1a1h5}/d1 

N1 = m4g + {– Fah4 + [(m2 + m3)(d1 – d3) + m1(d1 – d2)]g – m1a1h5}/d1 

N2 = m5g + {Fah4 + [(m2 + m3)d3 + m1d2]g + m1a1h5}/d1  

l3 = l1 + {m3[g(l2 – l1) – a3h2] – Fa(h3 – h1)}/(m2 + m3)g 

where:Fa = [k + c(x2 – x1 – l0)
2
](x2 – x1 – l0) + [b|V2 – V1| + f (m2 + m3)g]. 

Table 1 Free body diagrams (FBD) of the individual bodies ofthe VibroBot 

 

The differential equations andthe initial conditions governing the motion of the mechanical system are: 

 dx1/dt = V1,x1(0) = 0 

 dV1/dt = [k + c(x2 – x1 – l0)
2
](x2 – x1 – l0) + b|V2 – V1| + 

 f (m2 + m3)g]/ [m1 + (3/2)(m4 + m5)],    V1(0) = 0 

(4) dx2/dt = V2,    x2(0) = s0 

 dV2/dt = m3
 2 sin( 

t + 0) – {[k + c(x2 – x1 – l0)
2
](x2 – x1 – l0) + 

 b|V2 – V1| + f (m2 + m3)g} / (m2 + m3),    V2(0) = 0, where: 

(5) V1 = V1(t), whenV1(t) > 0,and  V1 = 0,  whenV1(t)  0 
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The conditions (5) designate the one-way motion of the robot. They are realized by means of one-way 

roller bearings build into the hubs of wheels, which allow forward motion of the VibroBot whenever the driving 

inertia force acts in that direction and wedge the backward motion whenever the inertial force acts in the 

rearward direction. 

Furthermore the equations (3), (4) and (5) are physically meaningful if at every instant t
 
[0,

 
tf ] the 

condition (6) for continuous contact between the wheels and the ground is satisfied: 

(6) Nj = min t Nj(t) > 0,   j = 1,
 
2. 

In the absence of slip of any wheel, the friction forces between the wheels and the ground are less than or equal 

to the maximum value of the resultant friction force Тj* given by the equation: 

(7) Тj  Тj*= 0 Nj,    j = 1, 2 

where: 0is the static coefficient of friction. We also assume that when the motion of the VibroBot becomes 

stable, condition (7) is fully satisfied. 

The mechanical perfection of the VibroBot design can be evaluated using a variety of criteria proposed 

by[11]. In general they can be combined into two groups – first to assess the mechanical means used in 

receiving a unit useful effect and second tocharacterize the intensity of dynamic regimes of operation. 

The primary indicator for assessing the one-way VibroBot motion in a kinematic aspect is his average 

velocity given by the integral: 

,d)(
1

         )8(
0

11 

ft

f

ttV
t

V  

where:V1(t) satisfies the condition (5). 

As a local criterion for a dynamic intensity the ratio K(t) = FE (t)
 
/
 
FD (t)of the applied horizontal 

resultant pushing force on the wheels FE (t) = {P1(t) + P3(t)}
+
and that of the driving inertia force 

FD (t) = {R1(t)}
+
at the instants t

 


 
[0, tf ] for which P1(t) + P3(t) > 0andR1(t) > 0,is used.  

(9) K = FE (t)
 
/
 
FD (t), 

Then for the evaluation of dynamic tension of the established motion of the VibroBot the average value of (9) is 

used as a local feature ofK(t) within the interval t
 


 
[0,

 
tf ]. 

III. NUMERICAL EXPERIMENT 
The mathematical model defined by (1)-(9) makes it possible to simulate the kinematic and dynamic features of 

the VibroBot as well as to analyze the influence of adjustableparameters of the prototype upon them. 

 A numerical experiment is carried out with nominal values of parameters of the prototype model 

substituted in (1)-(6) and determined in [7]. All these are listed in Table 2. For the numerical integration of 

differential equations (4) and (5) in the interval t
 


 
[0,

 
tf ], the MATLAB-program “ode113”having relative 

accuracy of 10
–6

and absolute precision of 10
–8

 is employed.  

Table2presents the mechanical parameters of the VibroBot model 

Symbols Value Dimensions Symbols Value Dimensions 

l0 0.045 m  0.0125 m 

l1 0.012 m r 0.038 m 

l2 0.040 m m1 1.500 kg 

l3 calculated m m2 1.165 kg 

s0x2(0) 0.060 m m3 0.120 kg 

d1 0.200 m m4 0.240 kg 

d2 0.099 m m5 0.160 kg 

d3 d3 =l3 + 0.06 m  40.19 rad/s 

d4 0.050 m k 2136 N/m 

h1 0.035 m c – 43218 N/m
4
 

h2 0.015 m b 6.280 Ns/m 

h3 0.014 m f 1.729 (10)
–4

 – 

h4 0.004 m 0
 0 deg 

h5 0.019 m tf 4 s 

In Figs. 3 to 5 the simulated basic kinematic characteristics of the VibroBot are depicted: namely 

displacements, velocities and accelerations during the rectilinear motion of bodies 1, 2 and 3. The functions 

x1(t), v1(t) and a1(t) during a steady-state regime of motion of the VibroBot have a periodic nature of variation, 

which governthe robot pulsating  motion.The sign variation of accelerations a1(t),a2(t) and a3(t) makes 

impossible the execution of a smooth variation of the acceleration a1(t), therefore the forward motion of the 

robot is a periodic pulsating motion. 
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The achievement of maximum possible asymmetry of the functions a3(t) and a1(t)is in principle 

feasible with the aid of a program controlled driving mechanism for a special class of wheeled robots – known 

as Inercoids [12].These were invented, demonstrated and examined using the Newton laws by [12],where 

special experimental devices were designed and constructed to prove their feasibility and functionality. 

Although these devises exist and were proved working they are not accepted by the conservative scientific 

society, since according to them, they contradict the Newton laws of motion by propelling themself without any 

contact with the ground.In this regard the invented, constructed and investigated VibroBot in this study does not 

defy the Newton’s laws of motion as it uses friction forces between the wheels and the ground for its propulsion. 

 
The graph of the function V1(x1)depicted in Fig. 6 illustrates anirregular state of alteration of the 

VibroBot phase condition during its acceleratingmotion. 

It is seen that the horizontal components of reactions in the bearings of the wheels are changing in 

phase (Fig. 7) whilesthe verticalreactionsare varying out of phase. It is also indicated that the vertical load on the 

bearings of the rear wheels is greater than the load on the front ones (Fig. 8). The reason for this is that the mass 

center of the whole system is non-symmetrically located and is somewhat closer to the rear wheel axes but not 

in the middle of the wheel span as supposed to be. Similarly, to an accuracy of a constant, the components of 

reactions of the groundacting on the wheels are also variable (Fig. 9 and Fig. 10) and they follow the same style 

of action as those in figures 7 and 8. 

 
Fig. 11 illustrate the variation of the predicted coefficients of frictions 1 = |

 
T1(t)/N1(t)

 
|and 

2 = |
 
T2(t)/N2(t)

 
| to achieve rolling of the wheels without sliding. From this figure it is seen that both coefficient 

of frictions vary continuously during the motion of the VibroBot.With the help of the prototype of the VibroBot 

it is found experimentally [8] that for surfaces of different roughness and material propertiesthe coefficient of 

static friction0 takes valueswithin the range [0.35, 0.75].Therefore the significant difference between the actual 

and the predicted values of these coefficients will guarantee the non-slip motion of the wheels during the 

rearward stroke of the propulsion mechanism of the VibroBot. This is very important because if there is a 

sliding during this period there will be no forward motion of the robot at all and it will perform forth and back 

motion only corresponding to what the principle of linear momentum states. Or the mass center of the whole 

system will remain at the same position relevant to the reference plane OXY of the absolute OXYZ system. 

Fig. 5 indicates the variation of 

accelerationsa
1
(t), a

2
(t) anda

3
(t) 

Fig. 6 shows the uneven change of the 

functionV
1
(x

1
) during the startup 

Fig.3 illustrates the displacements 

x
1
(t), x

2
(t) and x

3
(t) as functions of t 

Fig. 4 shows the non-uniform 

variation of velocitiesV
1
(t), V

2
(t) 

andV
3
(t) 
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The influence of variation of prototype parameters within their ranges: 

0
 


 
[0,

 
360 ]

  
deg,s0

 


 
[0,

 
0.1]

  
m, 


 
[30,

 
80]

  
rad/s,b

 


 
[5,

 
25]

  
Ns/m,k

 


 
[1000, 4000]

  
N/mare next investigated 

to find their influences on the average velocity V1. These can be traced out in Figs. 12, 13, 14, 15 as well as in 

Fig. 16. 

 

From Fig. 12 we realize that the initial deformation of the equivalent spring has limited effect on the 

increase of the average velocity of motion of the Vibrobot. It is important that its value has to be larger than the 

expected resonance amplitudes of the propulsion mechanism for a preset frequency to prevent unhooking of 

tension springs from theirsockets of attachment. If this occurs the motion of the Vibrobot will be ceased 

instantly and some damages of the propulsion mechanism may take place. This is because the amplitudes in 

resonance are very big as well as the magnitudes of inertia forces. The latter can induce strong impacts between 

the oscillating mechanism and other parts of the propulsion mechanism, hence possible damages. 

Fig. 11 shows the frictionvariables 1
(t) and 

2
(t)acting on the wheels when in transition 

Fig. 12illustrates the variation ofV1
(s

0
)  

in terms of initial spring pretension, so 

Fig. 9 demonstrates that friction 

forcesT1(t) and T2(t) are varying in 

phase  

Fig 10shows the normal reactionsN1(t) 

and N2(t)varying out of phase 

Fig. 7 shows the variation of horizontal 

forces P1 and P3 acting on the wheel axes 
Fig. 8 presents the alternation of vertical 

forces acting on the wheel axes P2 and P4 
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Fig. 13 and Fig. 14 justify the need for a coordinated choice of the values of parameters kand for 

proper functioning of the vibration propulsion mechanism in the areaof the main resonance.  

 
The non-linear nature of response of the function V1(b) reveals the potential for an increase ofthe 

average velocityby reducing dissipation of energy in the propulsion mechanism. This is clearly seen in Fig. 

15.That is way linear bearings were employed to guide and provide a support of the propulsion mechanism. That 

is way linear bearings were employed to guide and provide low friction in the propulsion mechanism. 

 
Fig. 16 illustrates the specific feature of the vibration drive that V1is highly sensitive to the variation 

of the initial phase angle 0 of the rotating unbalanced masses at the beginning of the startup process.The 

preferred value of the phase angle should be as close as possible to zero at the beginning of motion in order to 

achieve high mean velocity corresponding to it maximum value, as seen in Fig. 16.  

Fig. 17 shows the difference in magnitudes of the resultant horizontal propulsion force FE (t)acting on 

the wheels and the driving inertia force FD (t). The larger the difference between these forces the greater the 

Fig. 17 presentsthe gap between F
D
(t) andF

E
(t) forces withint

  
[2,

 
4] s 

Fig. 15shows the decrease ofV1
(b)  

with increased damping, b. 
Fig. 16 illustrates theV1

(0
) 

sensitivity from the phase 

angle,ϕo 

Fig. 13 explains the change of V1
(k)  

withvariation of the spring stiffness 

Fig. 14 presents the functionV1
() in 

terms of increasing angular frequency 
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propulsion force but the higher the dynamic intensity will be.For the set interval t
 


 
[2,

 
4] s within the settled 

motion of the VibroBot the criterion for dynamic intensity (9) wascalculated to have a value of K = 2.235 

indicating relatively high dynamic loading conditions. Generally, the larger the values of resonance frequency 

the higher the values of K are. This is due to the increased dynamic action of inertia forces generated at high 

frequencies of resonancebecause of very high values of the accelerations.  

IV. CONCLUSIONS 

The vibration propulsion is a non-traditional way to accomplish forward motion of wheeled robots. In this study 

the created non-linear model of a VibroBot with unidirectional motion is based upon experimental data of the 

force characteristics of a functional prototype model [7], [13]. The formulatedmathematical model allows 

simulating and analyzing the specific features of the robot’s motion and its kinematics and dynamics. 

Numerical results reveal strong sensitivity of the mean velocity of the VibroBot to the change of the 

initial pretension of the equivalent spring (Fig. 12) and its stiffness (Fig. 13),to the variation of angular 

frequency (Fig. 14) up to 55-60 rad/s, to the dissipation of energy in the propulsionmechanism (Fig. 15) and to 

the value of the initial phase angle of the periodic rotation of unbalanced masses (Fig. 16).The passive nature of 

propulsion of the wheels provides with a large reserve meeting the condition of rolling without slipping on 

surfaces of different roughnessand material properties (Fig. 11). 

The resonance regime of vibration propulsion promises achieving maximum average velocity of 

motion but gives rise to high dynamic overloads on the propulsionmechanism and on all bearings.The potentials 

for mechanical improvement of the VibroBot design may be determined after solving the task of optimization 

synthesis, in which to the variable kinematic and dynamic parameters of the model to add masses of all bodies 

and some of the non-utilized distances. The results of this study will provide opportunity in optimizing the 

propulsion mechanism and improving the mean velocity of motion of the robot upon different soil conditions. 

Also thiswill help utilizing the energy of the backward stroke of the propulsion mechanism in improving the 

forward motion of the robot and increasing its mechanical efficiency. This can be achieved by storing part of the 

kinetic energy of the backward motion of the propulsion system into a system of springs and transform it later 

into a forward motion of the Vibrobot [6].  

REFERENCES 
[1] Chernousko, F. Zimmermann, K. Bolotnik, S. Yatsun, I. Zeidis. Vibration-driven robots. Workshop on Adaptive 

and Intelligent Robots: Present and Future. Proceedings of the Institute for problems in Mechanics, Russian 

Academy of Science, Moscow, Vol. 1, 26–31, 2005. 

[2] Jatsun, S., N. Bolotnik, K. Zimmerman, I. Zeidis. Modeling of motion of vibrating robots. 12-th IFToMM World 

Congress, Besançon, France, June 18–21, 2007. 

[3] Jatsun, S., V. Dyshenko, A. Yatsun, A. Malchikov. Modelling of robot’s motion by use of vibration of internal 

masses. Proceedings of EUCOMES 08, the Second European Conference on Mechanism Science. M. Ceccarelli 

(Ed.), Springer, New York: 262–270, 2009. 

[4] Bolotnik, N., I. Zeidis, K. Zimmermann, S. Yatsun. Vibration-driven robots. 56th International Scientific 

Colloquium. Ilmenau University of Technology, 2011.  

[5] Provatidis, C.G. Design of a propulsion cycle for endless sliding on friction ground using rotating masses. 

Universal Journal of Mechanical Engineering, Vol. 2, No. 2, 35–43, 2014. 

[6] Blekhman, I.I. Vibrational Mechanics: Nonlinear dynamic effects, General approach, Applications. World 

Scientific, Singapore, 2000. 

[7] Loukanov, I.A., V.G. Vitliemov, I.V Ivanov. Multi-criteria identification of vibrobot dynamic characteristics. To 

be published 2015, a 

[8] Loukanov, I.A. Using inertial forces as a source of forward motion, Mechanics of Machines, Technical 

University Varna, Vol. 23 (110), No. 2, 104–107, 2014, a. 

[9] Loukanov, I.A. Applications of inertial forces for generating unidirectional motion. Proceedings of University of 

Rouse, Vol. 53, Book 2: Mechanics, Mechanical and Manufacturing Engineering: 9–19, 2014, b.  

[10] Meriam, J.L., L.G. Kraige. Engineering Mechanics. Vol. 2. Dynamics, 7th ed., John Wiley & Sons, New York, 

2012. 

[11] Gorskii, B.E. Dynamic Improvement of Mechanical Systems. Technics, Kiev, 1987 (in Russian). 

[12] Tolchin, V.N. Inertioid.Inertia force as a source of motion. Perm publishers, Perm, 1977 (inRussian). 

[13] Loukanov, I.A. Inertial propulsion of a mobile robot. Journal of Mechanical & Civil Engineering, Vol.12, No.2, 

Ver.2: 23–33, 2015, b 


